首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39253篇
  免费   3944篇
  国内免费   2236篇
电工技术   1569篇
技术理论   2篇
综合类   2545篇
化学工业   13793篇
金属工艺   1422篇
机械仪表   1021篇
建筑科学   2145篇
矿业工程   734篇
能源动力   1389篇
轻工业   1614篇
水利工程   614篇
石油天然气   3482篇
武器工业   541篇
无线电   3509篇
一般工业技术   7249篇
冶金工业   932篇
原子能技术   648篇
自动化技术   2224篇
  2024年   111篇
  2023年   782篇
  2022年   789篇
  2021年   1169篇
  2020年   1300篇
  2019年   1216篇
  2018年   1166篇
  2017年   1447篇
  2016年   1529篇
  2015年   1462篇
  2014年   2113篇
  2013年   2481篇
  2012年   2548篇
  2011年   2934篇
  2010年   2175篇
  2009年   2194篇
  2008年   2093篇
  2007年   2523篇
  2006年   2422篇
  2005年   2001篇
  2004年   1744篇
  2003年   1545篇
  2002年   1310篇
  2001年   1193篇
  2000年   955篇
  1999年   673篇
  1998年   559篇
  1997年   443篇
  1996年   429篇
  1995年   348篇
  1994年   346篇
  1993年   276篇
  1992年   222篇
  1991年   186篇
  1990年   133篇
  1989年   122篇
  1988年   91篇
  1987年   55篇
  1986年   54篇
  1985年   83篇
  1984年   69篇
  1983年   51篇
  1982年   41篇
  1981年   8篇
  1980年   10篇
  1979年   6篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
木质素是自然界储量丰富的可再生天然酚类高分子,可替代传统化石资源应用于聚合物材料合成。木质素分子结构中的大分子刚性骨架可赋予材料独特的力学性能和热稳定性。但木质素化学组成和分子结构复杂、反应活性低,限制了在聚合物材料领域的应用。化学降解是一种高效、高选择性且应用广泛的降解方法,经化学降解处理得到的木质素低聚物具有活性官能团多、反应活性高、溶解性好等优点,有利于拓展木质素在聚合物材料领域的高附加值应用。重点综述了近年来国内外有关木质素化学降解及其降解产物应用于聚合物材料的研究进展。  相似文献   
82.
通过无皂乳液聚合法制备得到聚(三氟氯乙烯-乙烯基异丁基醚-十一烯酸钠)[P(CTFE-IBVE-SUA)]含氟乳液。考察了单体配比对聚合反应的影响,研究了SUA用量对乳液及聚合物性能的影响,并对聚合物的结构及乳胶粒的形貌进行了测定。结果表明:含氟无皂乳液P(CTFE-IBVE-SUA)的稳定性好、粒径分布均匀;改变单体配比中IBVE和CTFE的比例可以得到不同结构的含氟聚合物乳液;SUA用量对乳液的稳定性、乳胶粒的粒径大小及粒径分布、聚合物膜与水的接触角都有很大的影响;制得的乳液具有明显的核壳结构。  相似文献   
83.
Double‐network hydrogels were conveniently synthesized by the one‐shot radical polymerization of an ionic monomer for the first network and a non‐ionic monomer for the second network in the presence of crosslinkers by simultaneous addition of the monomers, that is, one‐shot and spontaneous two‐step polymerization accompanying the delay of polymerization of a second network monomer. We analyzed the polymerization process based on the conversion of each monomer during the reaction in the absence of crosslinkers. Then we fabricated the double‐network hydrogels using several polymerization systems consisting of a conjugated monomer and a non‐conjugated monomer in the presence of the dual crosslinkers. We analyzed the swelling, mechanical and viscoelastic properties of hydrogels synthesized by one‐shot radical polymerization to confirm the production mechanism and the network structure of the hydrogels. © 2020 Society of Chemical Industry  相似文献   
84.
ABSTRACT

In recent years, the exploration of a practical strategy for novel energetic molecules with high energy and low sensitivity is very desirable but highly challenging. Novel ionic energetic molecules have attracted much attention in this area due to their prominent advantages including low sensitivities, high thermal stability, and excellent energy performances. Herein, five different ionic energetic molecules based on new monovalent and divalent 4-oxyl-3,5-dinitropyrazolate moieties with enhanced oxygen balance have been synthesized, characterized and evaluated as potential high-energy materials. Thermal stability, sensitivities and energy output test were measured and studied in detail. The heats of formation and energetic parameters were calculated by using Gaussian 09 suite of programs and EXPLO 5 code. The results suggest that all as-prepared new molecules exhibit good thermal stability with high decomposition temperature (3, 231°C; 5, 160°C; 6, 185°C; 7, 180°C; 8, 213°C), and relative low sensitivity (IS > 20 J, FS = 324 N). Inheriting the significant oxygen content of monovalent and divalent 4-oxyl-3,5-dinitropyrazolate moieties, they also possess good energy properties (v D = 8238 ~ 9208 m s?1, P = 26.8 ~ 36.7 GPa, V o = 481.8 ~ 959.4 L kg?1), which make them competitive high-energy materials.  相似文献   
85.
Passivation of organometal halide perovskites with polar molecules has been recently demonstrated to improve the photovoltaic device efficiency and stability. However, the mechanism is still elusive. Here, it is found that both polymers with large and small dipole moment of 3.7 D and 0.6 D have negligible defect passivation effect on the MAPbI3 perovskite films as evidenced by photothermal deflection spectroscopy. The photovoltaic devices with and without the polymer additives also have comparable power conversion efficiencies around 19%. However, devices with the additives have noticeable improvement in stability under continuous light irradiation. It is found that although the initial mobile ion concentrations are comparable in both devices with and without the additives, the additives can strongly suppress the ion migration during the device operation. This contributes to the significantly enhanced electrical-field stress tolerance of the perovskite solar cells (PVSCs). The PVSCs with polymer additives can operate up to −2 V reverse voltage bias which is much larger than the breakdown voltage of −0.5 V that has been commonly observed. This study provides insight into the role of additives in perovskites and the corresponding device degradation mechanism.  相似文献   
86.
Silicene, a new 2D material has attracted intense research because of the ubiquitous use of silicon in modern technology. However, producing free-standing silicene has proved to be a huge challenge. Until now, silicene could be synthesized only on metal surfaces where it naturally forms strong interactions with the metal substrate that modify its electronic properties. Here, the authors report the first experimental evidence of silicene nanoribbons on an insulating NaCl thin film. This work represents a major breakthrough, for the study of the intrinsic properties of silicene, and by extension to other 2D materials that have so far only been grown on metal surfaces.  相似文献   
87.
《Ceramics International》2021,47(19):27177-27187
BaZrO3-based materials doped with a trivalent cation have excellent chemical stability and relatively high proton conductivity which makes them potential proton conducting oxide materials for various electrochemical device applications such as hydrogen processing, high-temperature electrolysis, and solid electrolyte in fuel cells. However, BaZrO3 showed poor sinterability, requiring high sintering temperatures (1700–2100 °C) with longtime sintering (20–100 h) to achieve the desired microstructure and grain growth. This sintering problem can be solved by slightly doping BaZrO3 with a sintering aid element. Therefore, in this study, two different zirconate proton conductors: BaZr0·9Y0·1O3-α (BZY) and BaZr0·955Y0·03Co0·015O3-α (BZYC) were sintered in an air atmosphere and an oxygen atmosphere for 20 h in the temperature range of 1500–1640 °C. The sinterability was evaluated by analyzing the XRD diffraction patterns, lattice constant, lattice strain, crystallite size, relative density, open porosity, closed porosity, surface morphology, grain size, and grain boundary distribution, using the XRD, SEM, EDX, and Archimedes density measurement methods. It is concluded that in an oxygen atmosphere, sintering aid Co not only improves the relative density but also produces highly dense fine particles with clear grain boundaries which are promising for electrochemical hydrogen device applications.  相似文献   
88.
Three polymers with excellent absorption properties were synthesized by graft polymerization: soluble starch-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid). Ammonium persulfate and potassium persulfate were used as initiators, while N,N′-methylenebisacrylamide was used as the crosslinking agent. The molecular structure of potato and soluble starch grafted by synthetic polymers was characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the resulting materials was studied using a scanning electron microscope (SEM). Thermal stability was tested by thermogravimetric measurements. The absorption properties of the obtained biopolymers were tested in deionized water, sodium chroma solutions of various concentrations and in buffer solutions of various pH.  相似文献   
89.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
90.
In the electro-deoxidation process, carbon parasitic reaction (CO32- + 4e-=C + 3O2-) usually occurs when using carbon materials as the anode, which leads to increase of the carbon content in the final metal and decrease of the current efficiency of the process. The aim of this work is to reduce the negative effect of carbon parasitic reaction on the electrolysis process by adjusting anode current density. The results indicate that lower graphite anode area can achieve higher current density, which is helpful to increase the nucleation site of CO2 bubbles. Most of CO2 would be released from the anode instead of dissolution in the molten CaCl2 and reacting with O2- to form CO32-, thus decreasing the carbon parasitic reaction of the process. Furthermore, the results of the compared experiments show that when the anode area decreases from 172.78 to 4.99 cm2, CO2 concentration in the released gases increases significantly, the carbon mass content in the final metal product decreased from 1.09% to 0.13%, and the current efficiency increased from 6.65% to 36.50%. This study determined a suitable anode current density range for reducing carbon parasitic reaction and provides a valuable reference for the selection of the anode in the electrolysis process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号